
J Glob Optim (2008) 42:443–466
DOI 10.1007/s10898-007-9254-x

Branch-and-price-and-cut algorithms for solving
the reliable h-paths problem

April K. Andreas · J. Cole Smith · Simge Küçükyavuz

Received: 24 January 2007 / Accepted: 6 October 2007 / Published online: 30 October 2007
© Springer Science+Business Media, LLC. 2007

Abstract We examine a routing problem in which network arcs fail according to inde-
pendent failure probabilities. The reliable h-path routing problem seeks to find a minimum-
cost set of h ≥ 2 arc-independent paths from a common origin to a common destination,
such that the probability that at least one path remains operational is sufficiently large. For
the formulation in which variables are used to represent the amount of flow on each arc, the
reliability constraint induces a nonconvex feasible region, even when the integer variable
restrictions are relaxed. Prior arc-based models and algorithms tailored for the case in which
h = 2 do not extend well to the general h-path problem. Thus, we propose two alternative in-
teger programming formulations for the h-path problem in which the variables correspond to
origin-destination paths. Accordingly, we develop two branch-and-price-and-cut algorithms
for solving these new formulations, and provide computational results to demonstrate the
efficiency of these algorithms.

Keywords Nonconvex optimization · Branch-and-price-and-cut · Network optimization ·
Reliability

1 Problem setup

Real-world applications of routing problems often call for a diverse routing strategy to pro-
tect against the failure of network infrastructure. For example, consider a communications

A. K. Andreas · S. Küçükyavuz
Department of Systems and Industrial Engineering, The University of Arizona, P.O. Box 210020, Tucson,
AZ 85721, USA
e-mail: april.andreas@gmail.com

J. C. Smith (B)
Department of Industrial and Systems Engineering, The University of Florida, P.O. Box 116595,
Gainesville, FL 32611, USA
e-mail: cole@ise.ufl.edu

S. Küçükyavuz
e-mail: simge@sie.arizona.edu

123

444 J Glob Optim (2008) 42:443–466

Fig. 1 Reliable h-path problem example

company that has determined that its customers will tolerate having a fraction of up to (1−τ)

of their data dropped. The company can send the information over one highly reliable path,
or it can send the same information along less-reliable paths, requiring that at least one signal
reaches the destination with a probability of at least τ . It might be cheaper for the company
to establish multiple relatively unreliable paths than to construct one highly-reliable path.
Another application arises in achieving military missions, such as destroying a particular
target that can be accessed via any number of paths, where each path assumes its own set of
risks. A commander can choose to deploy several groups along different paths such that at
least one of the groups will complete its mission within some acceptable level of reliability.

In this paper, we consider a directed graph G(N , A), where N = {1, . . . , n} is the set of
nodes and A is the set of arcs. Each arc (i, j) ∈ A has a usage cost ci j ∈ R+ and a reliability
0 < pi j ≤ 1, which denotes the probability that arc (i, j) is successfully traversed. These
probabilities are assumed to be independent. The problem considered here is that of finding
h ≥ 2 arc-independent paths from an origin node to a destination node such that the total cost
is minimized and the probability that at least one entire path of arcs does not fail, called the
joint reliability, is greater than or equal to some threshold value τ . We call this the Reliable
h-Path Problem with disjoint arcs, or RhP-D. A special case of this problem that we shall
also briefly discuss is the Reliable Two-Path Problem with disjoint arcs, or R2P-D.

In the example in Fig. 1, each arc is labeled with its usage cost and reliability. Given
τ = 0.65 and h = 2, the optimal solution uses paths ABFH and ADGH, with a cost of 31
and a joint reliability of 72.6%. Given instead τ = 0.80 and h = 3, the optimal solution
uses paths ACEH, ABFH, and ADGH, with a cost of 48 and a joint reliability of 81.5%.
(The fact that the same arcs from the two-path solution appear in the three-path solution is
coincidental).

Reliable single shortest path problems (h = 1) have received much attention in the lite-
rature, both in their methodological development and in their applications. Desrochers and
Soumis [7] develop a pseudopolynomial-time label-setting algorithm for a version of this
problem where time windows exist during which certain nodes can be visited. Their algo-
rithms generalizes the best-first selection strategy of Dijkstra’s algorithm [9] for the shortest
path problem, and uses a data structure called a generalized bucket in order to reduce the
time- and space-complexity required to solve these instances. For more details on the foun-
dational algorithms for these reliable single shortest path problems, we refer the reader to
the comprehensive work of Desrosiers et al. [8]. More recently, Chen and Powell [6] show
that a label-correcting algorithm based on the work of Glover et al. [15] often executes faster
than the algorithm of Desrosiers et al., despite its inferior worst-case complexity. Dumi-
trescu and Boland [10,11] present refinements to label-setting algorithms for this class of
problems. In particular, they perform preprocessing steps to reduce the size of test instances,
demonstrating that four out of six problem classes tested can largely be solved within their

123

J Glob Optim (2008) 42:443–466 445

preprocessing phase. For problems that cannot be solved by preprocessing, the authors
prescribe a weight-scaling method used in conjunction with a label-setting algorithm, where
the weights can be obtained from a preliminary Lagrangian dual phase.

Applications of single shortest path problems vary widely. Bard and Miller [3] address
a research and development project selection problem, in which spending additional money
on projects could increase their probability of success. Their approach employs a dynamic
programming-based heuristic technique embedded within Monte Carlo simulation to handle
the probabilistic aspect of their problem. Zabarankin et al. [24] consider a related problem
in optimizing path risk in the context of aircraft flight trajectory through a threat environ-
ment. Elimam and Kohler [12] describe some unique applications of the resource-constrained
shortest-path problem, such as the determination of optimal wastewater treatment processes
and thermal resistance of building structures.

Related to the class of multiple-path problems that we study in this paper, Fortune et al. [14]
provide a characterization of NP-complete vertex-independent routing problems on directed
graphs via the graph homeomorphism problem. Suurballe [19] presents a polynomial-time
labeling algorithm to find k node-disjoint paths between two given nodes. Andreas and Smith
[2] examine two versions of the reliable two-path problem, one where the two paths must be
arc-disjoint (R2P-D), and one where arc sharing is allowed, and prove both these problems
to be strongly NP-hard [1]. Therefore, we can state that RhP-D is strongly NP-hard as well.

In this paper we investigate the use of a branch-and-price-and-cut strategy for solving
RhP-D. Column generation often allows us to solve linear programs with a huge number
of variables, in which the vast majority of variables will equal to zero in a basic solution.
(For a detailed overview of column generation, see [16] and [23].) The branching step can
be more difficult in column generation algorithms than in traditional branch-and-bound pro-
cedures, because it must prevent the regeneration of any columns previously fixed to zero in
the branch-and-bound process. Another major challenge in implementing these algorithms
lies in ensuring that the pricing algorithm used in the root is unchanged in the child nodes
of the branch-and-bound tree. Further computational difficulties arise when the master pro-
blem exhibits symmetry, or when symmetry is induced by the column generation procedure.
Vanderbeck [21] proposes a generic routine to address the difficulties of maintaining an
invariant column generation routine and of combatting symmetry in solving Dantzig–Wolfe
reformulations of an integer program. Also, Vanderbeck and Wolsey [22] propose a method
to resolve integrality issues in specific column generation problems by modifying the sub-
problems as non-integer solutions are found, and extend their logic to the special case of 0-1
column generation problems.

The multi-commodity flow problem (MCFP) shares some characteristics with the reliable
h-path problem, and is particularly amenable to solution via column generation. Barnhart
et al. [5] describe the implementation of a branch-and-price-and-cut algorithm for a version
of the multi-commodity flow problem in which each commodity’s flows must take place on a
single path. In a separate paper, Barnhart et al. [4] also investigate using a so-called keypath
to help find optimal solutions using column generation.

We make the following contributions in this paper. One, we present two alternative refor-
mulations of RhP-D that are at least as tight as a compact model for solving the problem. Two,
we compare the efficiency of branch-and-price-and-cut on a concise model whose column
generation phase is computationally difficult, as opposed to a larger model in which columns
are generated in pseudopolynomial time. Three, we give models for handling the presence of
symmetry-breaking constraints and dynamically-generated cutting planes within the column
generation phase.

123

446 J Glob Optim (2008) 42:443–466

The rest of this paper is organized as follows. We begin in Sect. 2 by introducing some
relevant theory developed in [2] for R2P-D, and discuss the implications of extending this
logic to include instances where h ≥ 3. In Sects. 3 and 4, we develop two column generation-
based approaches for RhP-D. Section 5 discusses the results of a computational comparison
of these strategies. We conclude in Sect. 6 with a summary of our work and areas for future
research.

2 Compact model formulation

We begin by presenting a polynomial-size formulation of RhP-D. For all i ∈ N , define F S(i)
and RS(i) as the forward and reverse stars of node i , respectively. (That is, F S(i) = { j ∈ N :
(i, j) ∈ A} and RS(i) = { j ∈ N : (j, i) ∈ A}, ∀i ∈ N .) Let τ be the minimum permissible
probability that at least one path from the origin node 1 to the destination node n survives,
where 0 < τ < 1. We define yk

i j , ∀(i, j) ∈ A, k = 1, . . . , h, to be a binary variable equal

to one if path number k utilizes arc (i, j) and zero otherwise. Also, let variables sk
i represent

the probability that path k = 1, . . . , h successfully reaches node i ∈ N from node 1, given
that path k visits node i . RhP-D can be modeled as the following nonlinear mixed-integer
program.

Minimize
∑

(i, j)∈A

ci j

(
h∑

k=1

yk
i j

)
(1a)

subject to
∑

j∈F S(1)

yk
1 j = 1 ∀k = 1, . . . , h (1b)

∑

j∈F S(i)

yk
i j =

∑

�∈RS(i)

yk
�i ∀i ∈ {2, . . . , n − 1}, k = 1, . . . , h (1c)

h∑

k=1

yk
i j ≤ 1 ∀(i, j) ∈ A (1d)

sk
j ≤ pi j s

k
i + (1 − yk

i j) ∀k = 1, . . . , h, (i, j) ∈ A (1e)

sk
1 = 1 ∀k = 1, . . . , h (1f)

1 −
h∏

k=1

(
1 − sk

n

)
≥ τ (1g)

sk
n ≤ sk+1

n ∀k = 1, . . . , h − 1 (1h)

0 ≤ sk
i ≤ 1 ∀i ∈ N , k = 1, . . . , h (1i)

yk
i j ∈ {0, 1} ∀k = 1, . . . , h, (i, j) ∈ A. (1j)

The objective (1a) minimizes the total cost of the chosen paths, while (1b) and (1c) are
standard flow balance constraints and constraint (1d) enforces arc-disjointness. Our strategy
in (1e) and (1f) enforces the reduction of path k’s reliability along each arc (i, j) ∈ A for
which yk

i j = 1, ∀k = 1, . . . , h. The nonlinear constraint (1g) enforces the condition that at
least one path remains survivable with sufficiently large probability. Constraint (1h) removes
some problem symmetry by requiring that s1

n , . . . , sk
n be a nondecreasing sequence.

Andreas and Smith [2] handle the single nonlinear constraint (1g) for the case in which
h = 2 by constructing a convex hull relaxation of problem (1) without the integrality

123

J Glob Optim (2008) 42:443–466 447

constraints (1j). This relaxation is accomplished noting that (1g) intersects (1h) at (s1
n , s2

n) =
(1 − √

1 − τ , 1 − √
1 − τ), and s2

n ≥ 0 at (s1
n , s2

n) = (τ, 0). A convex underestimation of
(1g) that passes through these points is given by

(1 − √
1 − τ)s1

n + (
√

1 − τ − 1 + τ)s2
n ≥ τ(1 − √

1 − τ). (2)

The approach in [2] then reinstates the integrality constraints and solves the resulting problem
by replacing (1g) with the relaxed constraint (2). If the resulting solution obtained from this
relaxation is feasible to the original problem in which (2) is replaced by (1g), then an optimal
solution has been identified. Else, a disjunction is created over the continuous space of s1

n and
s2

n , and a branch-and-bound algorithm is executed in which each subproblem is an integer
program over some particular interval of s1

n and s2
n . One general rule divides the feasible

region into rectangular partitions of the
(
s1

n , s2
n

)
space. This technique is equivalent to the

Reformulation-Linearization Technique (RLT) [18] for continuous-variables optimization
problems, in a strategy similar to that employed by [13].

The previous approach would suffer for RhP-D, h ≥ 3, due to the increasing difficulties
of relaxing multiple nonlinear terms as h increases. For h = 3, for example, (1g) now
includes the nonlinear terms s1

n s2
n , s1

n s3
n , s2

n s3
n , and s1

n s2
n s3

n . We can handle these terms by an
RLT approach related to the one employed for h = 2, but the number of such terms will
increase exponentially as h increases. Moreover, for the case in which h = 2, the optimization
process will tend to minimize the sole nonlinear term s1

n s2
n in order to achieve feasibility to

(1g). However, this behavior does not necessarily persist for h ≥ 3, and hence more effort
would be required to converge to the optimal solution.

As an alternative, recalling our assumption that τ < 1, observe that by rearranging the
terms of (1g) and taking the logarithm of both sides, we can rewrite this constraint as

h∑

k=1

log
(

1 − sk
n

)
≤ log (1 − τ),

which can be tightened as

h∑

k=1

max
{

log
(

1 − sk
n

)
, log (1 − τ)

}
≤ log (1 − τ). (3)

Now, this problem can be approached as in [2] by approximating each term log (1−sk
n) with a

relaxed linear function, and executing a continuous branch-and-bound search as before. More
specifically, we replace the left-hand-side of (3) with a piecewise-linear function u(sk

n), which
has one segment that intersects the points (sk

n , u(sk
n)) = (0, 0) and (τ, log (1 − τ)), and a

horizontal segment passing through (τ, log (1 − τ)) and (1, log (1 − τ)). We represent this
function using the following constraints:

U k ≥ (log (1 − τ)/τ)sk
n (4)

U k ≥ log (1 − τ), (5)

where U k, ∀k = 1, . . . , h, is a nonpositive value function variable associated with each
piecewise-linear function. We claim that replacing (3) with the constraint

h∑

k=1

U k ≤ log (1 − τ), (6)

123

448 J Glob Optim (2008) 42:443–466

)log(1−

1τˆ

lo
g(

1−
τ)

Original
piecewise-linear
underestimation

Linear underestimations

after branching on

k
ns

k
ns

k
ns

k
ns

Fig. 2 Example continuous branching scheme

along with (4) and (5), yields a valid relaxation to RhP-D. This claim is justified by noting that
log (1−sk

n) is concave on the interval [0, 1), and so U k ≤ log (1−sk
n) for 0 ≤ sk

n ≤ τ . Hence,
if sk

n ≤ τ for each k = 1, . . . , h, (6) must be valid. Else, if sk
n > τ for any k = 1, . . . , h, we

have that U k = log (1 − τ) and (6) is satisfied, which ensures the validity of (6).
Denote the relaxation of (1) in which (1g) is replaced with (4), (5), and (6) as LRhP-D.

An analogous approach as taken in [2] would solve LRhP-D and tighten the constraints (1g)
via a continuous branch-and-bound process according to the following procedure.

Suppose that a solution with values ŝk
n , ∀k = 1, . . . , h, optimizes LRhP-D, but is in-

feasible to (1g). (Note that the ŝk
n -values can be set artificially low if, for instance, (6) is

not binding. However, for efficiency in this algorithm, we consider a solution to LRhP-D in
which ŝk

n is equal to the true reliability of path k, for each k = 1, . . . , h.) At the current step
of the algorithm, assume that sk

n has been restricted to lie in the interval [�k, uk], and that
u(sk

n) = log (1 − sk
n) at the points sk

n = �k and sk
n = min{τ, uk}, for each k = 1, . . . , h.

Since the current solution is infeasible to (1g), we must have that U k < log (1 − ŝk
n) for

some k = 1, . . . , h. Choose k� ∈ argmaxk=1,...,h{log (1 − ŝk
n) − U k}, and create two new

problems: one in which sk�

n ∈ [�k, ŝk�] with (4) modified so that it intersects log (1 − �k) and
log (1 − ŝk�

), and the other in which sk�

n ∈ [ŝk�
, uk] with (4) modified so that it intersects

log (1 − ŝk�
) and log (1 − min{τ, uk}). In this manner, we have branched on the continuous

ŝ-solution while preserving the validity of (6) over each new interval, and we recursively
solve both new problems in this fashion. Observe that the previous solution can no longer be
feasible in either of the two new branches, and will not be regenerated. This process continues
just as in branch-and-bound for integer programs, and terminates when each subproblem is
fathomed due to feasibility to (1g), infeasibility to the relaxed problem (which could occur
if no solution exists such that sk

n ∈ [�k, uk] ∀k = 1, . . . , h), or by bound. An illustration of
this process is given in Fig. 2.

Note that by contrast to the method presented in [2], this process must branch on h
nonlinear terms. Anticipating that the convergence of this method can potentially be slow if
the reliability constraint is difficult to meet, we instead turn to a branch-and-price-and-cut
approach that circumvents the need for a continuous branch-and-bound search.

3 Aggregated column generation model

In this section, we introduce an alternative path-based formulation for RhP-D in which
decision variable x p equals to one if path p ∈ P is selected, and zero otherwise, where P is

123

J Glob Optim (2008) 42:443–466 449

the entire set of origin-destination paths in the network. Since there are exponentially many
such paths to generate, we instead consider a subset of paths P ⊆ P and employ column
generation, using a branch-and-price-and-cut algorithm to solve the problem. After relaxing
integrality, we have the following Restricted Master Problem (RMP) formulation:

Minimize
∑

p∈P

C px p (7a)

subject to
∑

p∈P

x p = h (7b)

∑

p∈P

δ
p
i j x p ≤ 1 ∀(i, j) ∈ A (7c)

1 −
∏

p∈P

(
1 − Rp

)x p ≥ τ (7d)

x p ≥ 0 ∀p ∈ P, (7e)

where C p is the total cost of path p (sum of its arc costs), Rp is the reliability of path p
(product of its arc reliabilities), and δ

p
i j is a constant that equals to 1 if arc (i, j) is used in

path p, and zero otherwise, ∀p ∈ P, (i, j) ∈ A. We convert (7d) to the linear constraint
∑

p∈P

log
(
1 − Rp

)
x p ≤ log (1 − τ) , (8)

by the same logic used to transform (1g) into (3).

Remark 1 Note that we could choose to tighten (8) by tightening the left-hand-side coeffi-
cients as

∑

p∈P

max{log
(
1 − Rp

)
, log (1 − τ)}x p ≤ log (1 − τ) . (9)

Except where noted otherwise, we develop the column generation procedure using the simpler
(but weaker) constraint (8). We demonstrate in Sect. 5 that the use of the stronger inequalities
above do not significantly affect the efficiency of our proposed algorithm.

Denote RMP� as formulation (7) in which (9) is used in lieu of (7d) and in which all
columns in the set P have been generated. Proposition 1 demonstrates that RMP� is at least
as tight as the linear relaxation of LRhP-D.

Proposition 1 Let zL equal the linear programming relaxation objective function value of
LRhP-D, and let z A equal the objective function value of RMP� (where each z-value is taken
to equal ∞ if its corresponding problem is infeasible). Then z A ≤ zL .

Proof We prove this proposition by demonstrating that any solution x ′ to RMP� corresponds
to a solution to the linear relaxation of LRhP-D having an identical objective function value.
First, we transform the solution x ′

p, ∀p ∈ P , to an equivalent intermediate solution x̂ k
p, ∀p ∈

P, k = 1, . . . , h, as follows:

h∑

k=1

x̂ k
p = x ′

p ∀p ∈ P

∑

p∈P

x̂k
p = 1 ∀k = 1, . . . , h.

123

450 J Glob Optim (2008) 42:443–466

This (nonunique) transformation decomposes the x ′-solution into individual collections of
fractional paths (as will be done in Sect. 4). This allows us to obtain a solution (ŷ, ŝ) to the
linear relaxation of LRhP-D as follows.

ŷk
i j =

∑

p∈P:(i, j)∈p

x̂k
p ∀(i, j) ∈ A, k = 1, . . . , h

ŝk
1 = 1 ∀k = 1, . . . , h

ŝk
j = min

{
1, min

i∈RS(j)

{
pi j ŝ

k
i + (1 − ŷk

i j)
}}

∀ j ∈ N \ {1}, k = 1, . . . , h,

where the ŝ-variables are determined recursively starting from node 1. It is easy to see that the
objective function of the linear relaxation of LRhP-D given by this choice of (ŷ, ŝ) is equal
to the objective function of RMP� given by x ′. After reindexing the indices k = 1, . . . , h
if necessary to satisfy the anti-symmetry constraint, the solution (ŷ, ŝ) clearly obeys all
constraints of (1) except for the reliability constraint. Setting

Û k = max{ŝk
n log (1 − τ)/τ, log (1 − τ)} (10)

guarantees feasibility to (4) and (5). We now show that (6) holds true.
The key step in our proof shows that

∑
p∈P Rpx̂k

p ≤ ŝk
n , ∀k = 1, . . . , h, which we

will accomplish by demonstrating that Rpx̂k
p is no more than a unique term comprising

ŝk
n , for each p ∈ P . For each k, consider an origin-destination “critical path” having arcs

(i1 = 1, j1), (i2 = j1, j2), . . . , (iW = jW−1, jW = n) such that ŝk
jw

= min{1, piw jw ŝiw +
(1 − ŷk

iw jw
)} for each w = 1, . . . , W . First, suppose that ŝk

jw
< 1, ∀w = 1, . . . , W . To show

that Rpx̂k
p is no more than some term of ŝk

n for some path p ∈ P , let (iµ, jµ) be the last arc
on the critical path that does not belong to path p. If (iµ, jµ) does not exist, then path p is
equivalent to the critical path, and so contains exactly the arcs (i1, j1), . . . , (iW , jW). Hence,
Rp = ∏W

w=1 piw jw . Observe that.

ŝk
n = ((((pi1 j1 + 1 − ŷk

i1 j1)pi2 j2 + 1 − ŷk
i2 j2) · · ·)piW jW + 1 − ŷk

iW jW)

=
W∏

w=1

piw jw +
W∑

w=1

[(
1 − ŷk

iw jw

) W∏

a=w+1

pia ja

]
, (11)

where
∏W

a=W+1 pia ja is taken to be 1. Because the first term of (11) is given by
∏W

w=1 piw jw =
Rp , and since x̂ k

p ≤ 1, we have that

Rpx̂k
p ≤

W∏

w=1

piw jw . (12)

Now, suppose that (iµ, jµ) exists for some µ ∈ {1, . . . , W }. Noting that 1− yk
iµ jµ

is equal

to
∑

v∈P:(iµ, jµ)/∈v x̂ k
v , we can write ŝk

n as:

ŝk
n =

⎛

⎝ŝk
iµ piµ jµ+

∑

v∈P:(iµ, jµ)/∈v

x̂ k
v

⎞

⎠
W∏

w=µ+1

piw jw +
W∑

w=µ+1

[(
1−ŷk

iw jw

) W∏

a=w+1

pia ja

]
. (13)

Since the path p under consideration belongs to the set {v∈P : (iµ, jµ) /∈ v}, one term of ŝk
n is

equal to x̂ k
p
∏W

w=µ+1 piw jw . Furthermore, path p intersects arcs (iµ+1, jµ+1), . . . , (iW , jW),

and so we have that Rpx̂k
p ≤ x̂ k

p
∏W

w=µ+1 piw jw .

123

J Glob Optim (2008) 42:443–466 451

Therefore, every nonzero term of
∑

p∈P Rp x̂k
p is less than or equal to a term of ŝk

n .
Furthermore, for the unique path p ∈ P in which (iµ, jµ) does not exist, the first term of (11)
is no less than Rpx̂k

p , and for all other paths, a separate term in the summation term of (11)

is no less than (11), and so unique terms of (11) are no less than each term of
∑

p∈P Rp x̂k
p .

Since all terms of (11) are nonnegative, we have
∑

p∈P

Rp x̂k
p ≤ ŝk

n . (14)

Now, suppose that ŝk
i = 1 for at least one node on the critical path other than node 1, and

let node iν be the last critical path node for which ŝk
iν

= 1. The same argument as above can

be used to demonstrate that unique terms of ŝk
n are greater than or equal to Rpx̂k

p for each
path p ∈ P for which µ exists, and µ ≥ ν. Else, for the unique path p ∈ P such that µ does
not exist, or for paths p ∈ P such that µ < ν, we can rewrite ŝk

n as

ŝk
n =

∑

v∈P

x̂k
v

W∏

w=ν

piw jw +
W∑

w=ν

[(
1 − ŷk

iw jw

) W∏

a=w+1

pia ja

]
, (15)

because
∑

v∈P x̂k
v = 1. Note that (15) contains the term x̂ k

p
∏W

w=ν piw jw , and that
∏W

w=ν piw jw
≤ Rp , since path p uses each of the arcs (iν, jν), . . . , (iW , jW) in its path. Thus, once again,
we obtain (14) for the case in which ŝk

i = 1 for node i on the critical path, i 	= 1.
Recalling that u is the piecewise-linear function represented by (4) and (5), since (14)

holds true for all k = 1, . . . , h, we have

Û k = u(ŝk
n) ≤ u

⎛

⎝
∑

p∈P

Rpx̂k
p

⎞

⎠

≤
∑

p∈P

u
(
Rp

)
x̂ k

p

≤
∑

p∈P

max{log (1 − Rp), log (1 − τ)}x̂ k
p. (16)

The first inequality is due to the fact that u is nonincreasing, and due to (14). The
second inequality is due to the convexity of u, and the third inequality is due to the fact
that max{log (1 − Rp), log (1 − τ)} ≥ u

(
Rp

)
. Thus, the feasibility of x̂ to (9) implies that Û

as computed by (10) must represent a feasible solution to LRhP-D. Therefore, any feasible
solution to RMP� is also feasible to LRhP-D, and this completes the proof.
�
Remark 2 Note that z A < zL in many instances, due to the presence of strict inequalities
in the derivation of (16). First, we often have that

∑
p∈P Rpxk

p < sk
n . This is due to the

fact that in showing (14), we can often state that each term Rpxk
p is strictly less than a

corresponding (and unique) term of sk
n . Furthermore, there usually exist many additional

positive terms of sk
n that do not correspond to terms of

∑
p∈P Rpxk

p , which further increase
the gap in the first inequality. Second, because log (1 − Rp) is strictly concave, u(Rp) <

max{log (1 − Rp), log (1 − τ)} for Rp < τ in the third inequality.

The tightness of (7) is primarily due to the fact that the reliability of each path is not
approximated in (8) (or (9)). This formulation does, however, require the dynamic generation
of new columns whose values must be binary at optimality. We thus propose a branch-and-
price-and-cut strategy as described in the following subsections. Section 3.1 describes the

123

452 J Glob Optim (2008) 42:443–466

pricing problem and algorithm used to generate columns. Section 3.2 discusses strategies for
generating cutting planes to eliminate fractional solutions, and for generating initial columns
to ensure the existence of feasible solutions. We discuss our branching strategy in Sect. 3.3.

3.1 Pricing

Let α, −πi j , and −λ represent the duals associated with (7b), (7c), and (8), respectively.
Given these dual values, the reduced cost cp of any variable x p, p ∈ P , is given by

cp = −α +
∑

(i, j)∈A

(
ci j + πi j

)
δ

p
i j + λ log

(
1 − Rp

)
. (17)

We seek a variable corresponding to a path p ∈ P that has a negative reduced cost with respect
to the current dual variable values. Since the −α term in (17) is constant, we minimize∑

(i, j)∈A

(
ci j + πi j

)
δ

p
i j + λ log

(
1 − Rp

)
. The smallest value of the first term is easy to

find by simply adjusting the arc lengths to ci j + πi j , and solving a shortest-path problem.
However, in order to incorporate the values of Rp , we enumerate each Pareto-optimal path
with respect to minimizing adjusted cost and maximizing reliability (retaining one such path
in case of a tie). We employ a node-labeling scheme such that at the completion of the
algorithm, we have � such Pareto-optimal paths, labeled p1, . . . , p�, such that Rpi > Rpi+1

and C ′
pi

> C ′
pi+1

, ∀i = 1, . . . , � − 1, where C ′
p is the cost of path p with the adjusted

arc costs. If all arc costs are nonnegative, we can use a version of Dijkstra’s algorithm to
accomplish this; however, if any arc costs are negative, we must use a modified Bellman-Ford
algorithm. The details of these modified path algorithms are given in the Appendix. They
are variants of the label setting method of Desrochers and Soumis [7] for solving weight
constrained shortest path problems.

After all such Pareto-optimal paths have been found, we then compute the reduced cost
of each path according to (17), and select one path p∗ having the minimum reduced cost. If
cp∗ = 0, then we have optimized the RMP, and we proceed to the branching portion of the
algorithm. Else, we have that cp∗ < 0, and thus we add the path p∗ to P and resolve the
RMP.

3.2 Enhancements

One option to accelerate the convergence of this algorithm is to complement the reliability
constraint with a set of valid inequalities that prohibit the selection of paths whose reliabilities
are too small to be used in a feasible solution. Given a solution x̂ to our RMP at an active node
of the branch-and-bound tree, we define P(x̂) as a set of paths associated with the h-largest
x̂ p-variables in our current solution, and let A(x̂) be the set of arcs used by those paths.

Note that if
∑

p∈P(x̂) x̂ p > h − 1, then the paths in P(x̂) will be arc-disjoint. To see this,
note that even the two smallest x̂-values would sum to more than 1, since otherwise, we would
have paths p1 and p2 in P(x̂) such that x̂ p1 + x̂ p2 ≤ 1, and thus

∑
p∈P(x̂)\{p1,p2} x̂ p > h −2.

But since |P(x̂)\{p1, p2}| = h −2, the latter inequality would require at least one x̂-variable
to exceed 1, which is impossible. Hence, x̂ p1 + x̂ p2 > 1 for any distinct pair of pi and p j in
P(x̂), and so by (7c), the paths cannot share any arcs. Therefore, if 1−∏

p∈P(x̂)

(
1 − Rp

) ≥ τ ,
then the solution using the paths in P(x̂) is a feasible solution. We calculate the cost of this
solution and, if it is less than our current incumbent solution objective, use this new solution
to prune our branch-and-bound tree. This check will be done automatically and will serve as
our baseline to compare to the enhancement methods described below.

123

J Glob Optim (2008) 42:443–466 453

On the other hand, if 1 − ∏
p∈P(x̂)

(
1 − Rp

)
< τ and

∑
p∈P(x̂) x̂ p > h − 1, then we can

seek a feasible solution by using an implicit enumeration algorithm, described below, to see
if a feasible solution exists using only the arcs in A(x̂). If so, then we update our incumbent
upper bound, if possible, and attempt to further prune our branch-and-bound tree. We refer
to this process as “probing”.

The implicit enumeration algorithm that we use as a subroutine identifies a feasible set of
h paths (with respect to the joint reliability constraint) from node 1 to node n in a subgraph,
which contains a set of arcs from which exactly h arc-disjoint paths must be created. Our
algorithm builds an enumeration tree that contains all possible sets of h paths, pruning a
particular branch of the tree if the partial paths established on the branch are infeasible due
to sufficiently low joint reliabilities of the paths already constructed.

If no feasible solution exists using only arcs in A(x̂), then we can add a cutting plane to
the model (our “cutting plane” scheme). We index these inequalities q = 1, . . . , Q, where Q
is the current number of valid inequalities added. If

∑
(i, j)∈A(x̂)

∑
p∈P δ

p
i j x̂ p > |A(x̂)| − 1,

then we set Q = Q+1 and AQ = A(x̂ p), and add inequality Q to the formulation as follows:

∑

p∈P

⎛

⎝
∑

(i, j)∈AQ

δ
p
i j

⎞

⎠ x p ≤ |AQ | − 1. (18)

Formulating RhP-D as (7a–c, e), (8), and inequalities (18), ∀q = 1, . . . , Q, the reduced
cost of the variable corresponding to path p is now given by

cp = −α +
∑

(i, j)∈A

(
ci j + πi j

)
δ

p
i j +

Q∑

q=1

⎛

⎝
∑

(i, j)∈Aq

σqδ
p
i j

⎞

⎠ + λ log
(
1 − Rp

)
, (19)

where −σq is the dual variable associated with constraints (18), ∀q = 1, . . . , Q. During the
pricing portion of the algorithm, the adjusted cost for an arc (i, j) now becomes ci j + πi j +∑Q

q=1

q
i jσq , where

q
i j equals to 1 if (i, j) ∈ Aq and 0 otherwise.

The branch-and-price-and-cut approach assumes the existence of an initial feasible solu-
tion to the RMP which may in fact become infeasible after cut generation and branching steps
are applied. For the aggregated model, we will create a single initialization column having
a big-M cost, such that its selection maintains RMP feasibility regardless of what columns
have already been added, or what branching restrictions have been applied. Hence, we create
a column having a coefficient of h for (7b), zero for all the constraints (7c) (and later for all
the constraints (18)), and log (1 − τ) for the constraint (8). This initialization column must
be included after each branching step, due to the modifications to the RMP that take place
after branching, as described in the following subsection.

In addition to the single-initialization column method, we may also opt to initialize the
RMP by seeding P with several paths, which may lead to a feasible solution. One such
procedure uses Dijkstra’s algorithm to find a most reliable path in the graph, and adds that
column to P . We then delete the arcs used in that column from the graph, and find a most
reliable path on the remaining arcs, if one exists. We continue to add paths in this greedy
manner until P contains at most h arc-disjoint paths, or until no more paths exist in the
reduced network. The goal of this procedure is to seek a set of high-reliability paths that are
likely to satisfy the joint-reliability constraint.

An alternative idea is to generate h arc-disjoint paths of minimum costs. This goal can be
accomplished by solving a minimum-cost flow problem in which a supply of h units exists
at node 1, a demand of h units at node n, and in which all arc-capacities are equal to 1.

123

454 J Glob Optim (2008) 42:443–466

A preliminary investigation revealed that the greedy reliability-based initialization method is
slightly more effective than the other methods, although the advantage is not significant. This
is consistent with the work of Vanderbeck [20], who showed empirically that the inclusion
of initialization columns corresponding to good integer solutions do not necessarily improve
the computational efficiency of branch-and-price-and-cut algorithms.

3.3 Branching

Following the column generation phase, the branching phase must occur in a manner that
forces the algorithm to converge. Simply branching on an x p-variable is problematic, because
a variable that is forced to equal to zero will reappear under a different index in the column
generation subroutine that follows the branching step. Instead, we examine the sum of flows
on each arc in our solution. If there exists an arc (i, j) such that 0 <

∑
p∈P δ

p
i j x̂ p < 1, we

branch by insisting that this arc contains a total flow of either zero or one. In the former case,
we simply delete (i, j) from the graph, as well as any paths in P that use that arc, for future
iterations along that branch. In the latter case, we adjust the constraint corresponding to (i, j)
in (7c) to be an equality.

When we require the sum of flows to equal one, the dual variable πi j becomes unrestricted
and there now exists a risk of encountering negative-cost cycles in our network during the
column generation phase. The column generation phase becomes strongly NP-hard in this
case, and so we cannot reasonably solve the pricing portion of the algorithm if these cycles
exist in our graph. Indeed, a preliminary computational analysis revealed that this behavior
is persistent in cyclic graphs, and that the foregoing algorithm fails to converge within rea-
sonable computational limits. Therefore, we limit our examination of the aggregated model
to directed, acyclic graphs.

If the sum of flows on each arc in a solution is binary but the x̂ p-variables are not integer,
then this branching scheme fails since there are no fractional flows on which we may branch.
In this case, we need to determine if any feasible integer solution can be found using only the
arcs in our solution by employing an implicit enumeration algorithm in which we examine
viable permutations of the arcs used in our solution. (For the special case in which h = 2, the
two paths with the highest joint reliability will use the most reliable path available; however,
this greedy approach does not necessarily maximize joint reliability when h ≥ 3.)

We illustrate this situation in Fig. 3, where path 1 follows nodes ACE, path 2 follows
ABCDE, path 3 follows ABCE and path 4 follows ACDE. If h = 2 and x̂1 = x̂2 = x̂3 =
x̂4 = 0.5, the sum of flows on each arc is equal to one. In this example, for τ = 0.65, if we
use the combination of paths 3 and 4, we get a joint reliability of 0.55, whereas if we use
the combination of paths 1 and 2, we get a joint reliability of 0.76. While either combination
necessarily yields the same total cost of 38, only the combination of paths 1 and 2 gives a
feasible solution, even though the constraint (8) is satisfied by the current fractional solution.

Fig. 3 Example of fractional paths and integer flows

123

J Glob Optim (2008) 42:443–466 455

This same example can be extended by creating parallel subgraphs as shown in Fig. 3 to
demonstrate that this situation can exist for h > 2.

Given such a fractional solution x̂ , if an integer feasible solution exists using just the arcs
in A(x̂), it is optimal (since the aggregate flows are unaffected, the total cost remains the
same no matter how we distribute the individual paths). On the other hand, if no solution
exists, we cut off the solution by adding a cutting plane of the form (18). This check uses the
same implicit enumeration algorithm described earlier.

As expected, our preliminary investigation confirms that the introduction of possible
negative-cost cycles in the course of the foregoing branching strategy causes the column gene-
ration approach to become much less efficient, because the shortest path problem
solved in the pricing phase becomes strongly NP-hard in the presence of negative cost cycles.
We address this difficulty in the following section by reformulating the Restricted Master
Problem.

4 Disaggregated column generation model

To avoid the solution of shortest path problems involving negative cost cycles within our
pricing problems, we prescribe in this section a different flow model based on the work of
Barnhart et al. [5] for our problem. Using their flow model, we can eliminate the presence
of negative costs in our shortest path pricing problems. We demonstrate below that this new
model involves a pseudopolynomial column generation routine, instead of the exponential-
time column generation algorithm required by the aggregated model for graphs that contain
directed cycles, but at the expense of a larger model with symmetry complications.

For this alternative model, define xk
p equal to 1 if path p ∈ P is selected as the kth path

in the solution, ∀k = 1, . . . , h, and zero otherwise. That is, we disaggregate the condition
that h paths exist by specifying which path serves as the kth path in the solution for each
k = 1, . . . , h. Let Pk be the set of paths that are candidates to be the kth path, and define
Pk ⊆ Pk as the subset of paths enumerated thus far for path k, ∀k = 1, . . . , h. We state the
following continuous disaggregated Restricted Master Problem model for RhP-D as follows:

Minimize
h∑

k=1

∑

p∈Pk

C pxk
p (20a)

subject to
∑

p∈Pk

xk
p = 1 ∀k = 1, . . . , h (20b)

h∑

k=1

∑

p∈Pk

δ
p
i j xk

p ≤ 1 ∀(i, j) ∈ A (20c)

h∑

k=1

∑

p∈Pk

log
(
1 − Rp

)
xk

p ≤ log (1 − τ) (20d)

xk
p ≥ 0 ∀p ∈ Pk, k = 1, . . . , h. (20e)

Note again that (20d) can be tightened by adjusting the left-hand-side coefficients to max{log
(1− Rp), log (1−τ)} as mentioned in Remark 1. Moreover, using this tightened constraint in
lieu of (20d), the proof of Proposition 1 can be directly applied (without need for transforming

123

456 J Glob Optim (2008) 42:443–466

x ′ to x̂) to show that the linear relaxation of (20), using all columns, is at least as strong as
that of LRhP-D.

Aside from the increase in model size from using the disaggregated model instead of the
aggregated model discussed in Sect. 3, the formulation given by (20) also exhibits problem
symmetry that is known to induce substantial computational complications in integer pro-
gramming problems [17]. In this particular case, the designation of paths as the first path,
second path, and so on, is artificial, and guarantees the existence of at least h! alternative opti-
mal solutions. Rather than burden the branch-and-bound process with the task of identifying
and fathoming all branches that contain these solutions, we state a set of symmetry-breaking
constraints to eliminate the existence of these solutions. Since each path must be arc-disjoint,
the second node visited in each path must be distinct. Hence, we require that the index of the
second node visited in path 1 is strictly less (by at least one) than the second node visited in
path 2, which is strictly less than the second node visited in path 3, and so on. The following
constraints establish this hierarchy.

∑

p∈Pk+1

∑

j∈F S(1)

jδ p
1 j xk+1

p −
∑

p∈Pk

∑

j∈F S(1)

jδ p
1 j xk

p ≥ 1 k = 1, . . . , h − 1. (21)

Remark 3 We may also attempt to break symmetry by enforcing some restriction such as
Rp1 ≥ Rp2 ≥ · · · ≥ Rph . Breaking symmetry in this fashion allows us to use information
about the reliability of specific paths to limit the search area and prune the graph. However,
if we attempt to break symmetry based on reliability or cost

(
C p1 ≥ C p2 ≥ · · · ≥ C ph

)
, not

only will these rules fail to uniquely break symmetry, but they can create situations in which
less-reliable, higher-cost paths will have a lower reduced cost than highly-reliable, low-cost
paths due to the values of the duals associated with these constraints. Worse, this could make
the pricing algorithm enumerate almost every possible path from 1 to n. Hence, we do not
consider the use of cost- or reliability-based symmetry-breaking rules in this paper.

Once again, we divide the discussion of our branch-and-cut into three subsections. We
discuss the pricing algorithm in Sect. 4.1, cutting plane and initial feasible solutions in Sect.
4.2, and the branching scheme in Sect. 4.3.

4.1 Pricing

Let αk, −πi j , −λ, and φk represent the duals associated with (20b–d) and (21), respectively.
Define φ0 = 0 and φh = 0. We can write the reduced cost of any k path p ∈ Pk as

ck
p = −αk +

∑

(i, j)∈A

(
ci j + πi j

)
δ

p
i j +

∑

j∈F S(1)

j (φk − φk−1) δ
p
1 j + λ log

(
1 − Rp

)

∀k = 1, . . . , h. (22)

For each path p generated by the procedure, we add p only to Pk for which p has the
lowest reduced cost. That is, we add at most one path to each set Pk each time we solve the
RMP. Note that the term φk −φk−1 of (22) could be negative, with the result that the adjusted
costs of the arcs leaving node 1 may be negative for the pricing portion of the algorithm.
However, since we can assume without loss of generality that RS(1) = ∅, we can proceed
with our modified Dijkstra’s algorithm as before.

Due to our symmetry-breaking constraints, we note that if some path p∗ uses arc (1, 2), for
example, then p∗ must be the first path, if it is used. That is, we must require
x2

p∗ + · · · + xh
p∗ = 0. In general, this constraint is as follows

123

J Glob Optim (2008) 42:443–466 457

∑

p∈P j

δ
p
1 j

⎛

⎝
h∑

k= j

xk
p

⎞

⎠ = 0 ∀ j = 2, . . . , h. (23)

Similarly, we also state that

∑

p∈P j

δ
p
1,n− j+1

⎛

⎝
h− j∑

k=1

xk
p

⎞

⎠ = 0 ∀ j = 1, . . . , h − 1. (24)

Rather than formally adding these constraints (and handling their associated dual values in
the pricing phase), we can simply remove the arcs (1, 2), . . . , (1, j) in the pricing problem
for j = 2, . . . , h, as well as the arcs (1, n − (h − j) + 1), . . . , (1, n) in the pricing problem
for j = 1, . . . , h − 1.

4.2 Enhancements

We can use the enhancements discussed in Sect. 3.2 without significant adjustment. In the
disaggregated model, given a solution x̂ to our RMP at an active node of the branch-and-
bound tree, we define P(x̂) as a set of paths associated with the h-largest x̂ k

p-variables in our
current solution, and again let A(x̂) be the set of arcs used by those paths.

As for the initialization of this model, we create h initialization columns, each having a
coefficient of 1 for (20b), zero for all the constraints (20c), and log (1 − τ) for the constraint
(20d). We also use a coefficient of k+n for the (k−1)st constraint of (21), ∀k = 2, . . . , h, and
a coefficient of −k −n for the kth constraint of (21), ∀k = 1, . . . , h −1. Again, each of these
h columns will have some big-M cost. Additionally, we employ the greedy reliability-based
initialization column routine as described in Sect. 3.2.

4.3 Branching

We adopt the divergent path rule of Barnhart et al. [5] for this model. If there is any fractional
flow on the kth path, we trace the flow from node 1 on path k until we find the first arc (dk, f1)

on which the total flow in our solution is fractional (such an arc must exist, because a flow
of 1 reaches node dk). Next, we identify another arc, (dk, f2), on which a fractional flow
leaves node dk . Then we designate two sets of arcs Dk1 and Dk2 such that (dk, f1) ∈ Dk1,
(dk, f2) ∈ Dk2, Dk1 ∩ Dk2 = ∅, and Dk1 ∪ Dk2 = F S(dk). We now branch from our current
solution such that on one branch we have

∑

p∈Pk

δ
p
i j xk

p = 0 ∀(i, j) ∈ Dk1, (25)

and on the other branch we have
∑

p∈Pk

δ
p
i j xk

p = 0 ∀(i, j) ∈ Dk2. (26)

Instead of adding these constraints formally, we remove the arcs in Dk1 from the graph on
one branch and the arcs in Dk2 from the graph in the other branch for path k. Additionally, we
remove all paths in Pk that use the arcs deleted in each of the newly-created branches when we
resolve the RMP. This technique reduces the size of the graph on which the pricing problem
is executed over the course of the branch-and-price-and-cut algorithm. Since we cannot

123

458 J Glob Optim (2008) 42:443–466

encounter negative-cost cycles during the pricing portion of the algorithm, the branch-and-
price-and-cut approach can be executed on acyclic or cyclic graphs without encountering a
strongly NP-hard column generation problem.

5 Computational results

In this section, we evaluate the computational advantages of each of the strategies presented
here for various values of h. We will first compare the enhancement methods discussed in
Sect. 3.2 for both models, and will then compare the two models’ overall efficiency. We
will also make a comparison of these models to the problem formulation presented in [2] on
acyclic graphs. All computations were done on a 500 MHz Sun Blade 100 running Solaris
version 5.8 with 1.5 GB of installed memory. All computational times are listed in CPU
seconds. Linear and integer programming problems were solved using CPLEX 8.1.

Problem Set Generation. For comparison purposes, we tested the aggregated and disag-
gregated models on directed, acyclic graphs. For Problem Set 1, we generated 20 directed,
acyclic graphs for each combination of total nodes and arc densities, where a graph could
have 25, 50, 75, or 100 nodes, and could have an arc density of 20%, 50%, or 80%, for a
total of 240 instances. To generate a graph with roughly d% arc density, for each possible
(i, j) node pair, i < j , a random number was generated with a uniform distribution between
0 and 1, and arc (i, j) was generated if and only if this number was not more than d%. Since
no arcs (j, i), j > i , were generated, no directed cycles exist. We prohibited the generation
of an arc connecting node 1 directly to node n and required that at least five arcs left node
1 and at least five arcs entered node n. Arc costs were assigned by generating a random
number with a uniform distribution between 0 and 100. The joint reliability threshold τ was
generated using a uniform distribution between 0.5 and 1.0. Problem Set 2 was generated in
a similar fashion except that we required that at least ten arcs left node 1 and that at least ten
arcs entered node n.

In our first experiment, we analyzed the effectiveness of the enhancement methods discus-
sed in Sect. 3.2 by comparing the impact of probing and cut generation (CG) to the baseline
for both the aggregated and disaggregated models using Problem Set 1. The results of these
experiments for h = 3, 4, and 5 are shown in Tables 1–6 for the aggregated and disaggregated
models.

For the aggregated model, the cut generation strategy improved solution times for
75- and 100-node instances with 50% and 80% densities, and this improvement becomes
more pronounced as h increases. The number of cuts generated for a problem instance varied
from 4 to 160. We observed that the implicit enumeration algorithm necessary for branching
in the aggregated model was rarely invoked. For example, for Problem Set 1 and h = 5,
only three out of the 240 instances required the implicit enumeration algorithm to resolve a
branching problem and this happened only once throughout the course of the algorithm in
each of these three instances.

For the disaggregated case, neither of the enhancements consistently provided any com-
putational advantage. In fact, the probing and cut generation methods increased the average
computational time to solve the problem. This behavior appears to be due to the fact that the
branching phase eliminates many of the arcs that would otherwise be included in the valid
inequalities, thereby nullifying the effectiveness of any cutting plane strategy. Probing failed
to improve computation times over the baseline for either model, and failed to provide an
improved upper bound for the problem instances examined.

123

J Glob Optim (2008) 42:443–466 459

Table 1 Computational times for enhancement methods on aggregated model for h = 3

Size Method 20% Density 50% Density 80% Density

Average Standard deviation Average Standard deviation Average Standard deviation

25 Base 0.06 0.05 0.33 0.40 1.09 1.42

25 Probing 0.06 0.05 0.34 0.41 1.08 1.43

25 CG 0.05 0.05 0.34 0.36 1.15 1.49

50 Base 0.45 0.68 3.61 5.30 21.04 32.23

50 Probing 0.46 0.69 3.61 5.28 21.01 32.19

50 CG 0.43 0.59 3.25 3.98 21.76 35.50

75 Base 2.92 3.63 42.31 50.94 69.67 94.14

75 Probing 2.93 3.65 42.36 50.97 69.71 94.19

75 CG 2.52 2.71 37.45 48.07 45.13 58.34

100 Base 11.65 15.70 77.94 81.17 757.20 1539.74

100 Probing 11.66 15.65 77.90 81.15 757.89 1541.56

100 CG 11.71 15.83 56.65 68.50 385.00 797.38

Table 2 Computational times for enhancement methods on disaggregated model for h = 3

Size Method 20% Density 50% Density 80% Density

Average Standard deviation Average Standard deviation Average Standard deviation

25 Base 0.09 0.12 0.58 0.55 1.24 1.96

25 Probing 0.09 0.11 0.57 0.55 1.23 1.90

25 CG 0.09 0.12 0.55 0.53 1.36 2.26

50 Base 0.81 1.10 2.20 1.84 11.59 26.88

50 Probing 0.80 0.97 2.56 2.32 9.97 19.35

50 CG 0.79 0.97 2.60 2.30 10.51 21.76

75 Base 3.27 3.27 15.32 20.29 10.04 8.10

75 Probing 3.14 2.68 14.29 17.47 11.18 9.46

75 CG 3.17 2.76 16.53 24.16 10.79 8.94

100 Base 8.63 10.48 14.53 12.19 35.15 48.99

100 Probing 7.90 8.30 13.71 10.44 39.38 63.15

100 CG 8.00 8.64 13.89 11.60 50.59 99.97

The results from Tables 1–6 seem to indicate that the disaggregated model is easier to
solve than the aggregated model for h = 3, 4, and 5. For these instances, the computational
advantage afforded by the disaggregated model may be attributed to its branching strategy,
which removes approximately half of the arcs leaving a particular node from consideration
for path k. This technique shrinks the search region considerably after a few branches, and
allows us to conduct a more specific search to find the best path to add for a particular k. This
property, however, appears to become less of an advantage as h increases.

To test the hypothesis that the aggregated model becomes more effective as h increases,
we test the performance of both models for h = 6, 8, and 10. We compare the two mo-
dels using their most promising strategies (namely cut generation for the aggregated model

123

460 J Glob Optim (2008) 42:443–466

Table 3 Computational times for enhancement methods on aggregated model for h = 4

Size Method 20% Density 50% Density 80% Density

Average Standard deviation Average Standard deviation Average Standard deviation

25 Base 0.07 0.08 0.29 0.24 0.84 1.47

25 Probing 0.07 0.08 0.29 0.24 0.86 1.50

25 CG 0.08 0.11 0.29 0.24 0.88 1.50

50 Base 0.37 0.44 3.38 3.80 10.41 13.59

50 Probing 0.38 0.46 3.37 3.79 10.41 13.59

50 CG 0.39 0.50 3.51 4.30 10.44 13.76

75 Base 3.47 4.25 47.75 66.31 66.18 117.66

75 Probing 3.50 4.27 47.83 66.46 66.15 117.62

75 CG 3.49 4.50 37.45 47.09 46.88 52.77

100 Base 13.09 17.76 74.65 108.86 749.28 2213.40

100 Probing 13.14 17.85 74.67 108.76 749.07 2212.88

100 CG 12.52 16.94 72.82 118.81 357.63 939.28

Table 4 Computational times for enhancement methods on disaggregated model for h = 4

Size Method 20% Density 50% Density 80% Density

Average Standard deviation Average Standard deviation Average Standard deviation

25 Base 0.15 0.31 0.79 0.72 2.72 6.59

25 Probing 0.14 0.23 0.74 0.62 3.69 10.91

25 CG 0.15 0.30 0.74 0.70 3.16 8.43

50 Base 1.15 1.51 4.80 4.75 9.03 11.82

50 Probing 1.17 1.63 5.16 5.50 9.10 11.75

50 CG 1.33 1.90 5.01 5.34 8.02 9.70

75 Base 6.35 7.18 27.44 27.06 26.77 38.51

75 Probing 6.10 6.38 31.56 46.58 24.32 36.64

75 CG 7.10 8.40 28.41 30.96 27.15 43.47

100 Base 17.27 16.71 30.61 30.53 56.09 92.05

100 Probing 17.70 17.47 33.09 35.49 58.45 96.73

100 CG 20.14 22.19 32.62 35.19 55.10 79.09

and the baseline for the disaggregated model) on the most challenging test instances (i.e.,
75- and 100-node instances having 50% and 80% density) using Problem Set 2, and display
the results in Table 7. In our computations, we halted the algorithm before solving the master
problem if the total time elapsed exceeds 90 min (5400 s). The values in Table 7 marked with
an asterisk include at least one such instance, where the average computational times include
the time elapsed before the algorithm terminates (prematurely). For h = 8, the disaggregated
model failed to solve one instance out of the 75-node, 50% density set and one instance out
of the 100-node, 80%-density set. For h = 10, the disaggregated model failed to solve one
instance out of the 75-node, 50% density set, two instances out of the 100-node, 50% density
set, and one instance out of the 100-node, 80% density set. The aggregated implementation

123

J Glob Optim (2008) 42:443–466 461

Table 5 Computational times for enhancement methods on aggregated model for h = 5

Size Method 20% Density 50% Density 80% Density

Average Standard deviation Average Standard deviation Average Standard deviation

25 Base 0.08 0.12 0.29 0.29 1.27 3.20

25 Probing 0.08 0.10 0.29 0.28 1.26 3.18

25 CG 0.07 0.09 0.28 0.30 1.52 4.12

50 Base 0.26 0.29 3.88 5.28 12.79 19.81

50 Probing 0.27 0.29 3.89 5.30 12.79 19.80

50 CG 0.32 0.40 4.04 6.88 11.41 20.78

75 Base 6.12 8.43 56.84 88.36 97.54 176.79

75 Probing 6.16 8.48 56.87 88.42 97.56 176.72

75 CG 6.53 9.91 32.15 35.91 73.25 120.13

100 Base 11.40 19.76 161.11 283.93 451.51 986.25

100 Probing 11.46 19.90 161.26 284.25 451.47 986.04

100 CG 13.33 24.03 197.68 346.11 139.93 225.75

Table 6 Computation times for enhancement methods on disaggregated model for h = 5

Size Method 20% Density 50% Density 80% Density

Average Standard deviation Average Standard deviation Average Standard deviation

25 Base 0.18 0.41 1.37 1.45 10.04 34.95

25 Probing 0.19 0.39 1.33 1.32 9.85 35.69

25 CG 0.20 0.41 1.29 1.26 9.45 33.13

50 Base 2.21 3.63 8.00 8.76 21.11 38.91

50 Probing 2.20 3.60 8.16 9.21 20.30 33.37

50 CG 2.11 3.26 8.38 9.55 21.17 39.32

75 Base 15.13 17.69 41.79 42.31 75.87 162.00

75 Probing 15.73 17.09 42.99 38.96 82.58 193.34

75 CG 15.33 17.70 43.64 39.38 89.74 215.42

100 Base 24.30 29.13 113.53 117.04 79.77 94.95

100 Probing 26.58 30.23 109.92 105.21 81.18 99.25

100 CG 25.75 28.16 114.38 125.30 80.80 93.44

solves all instances within the allotted time limit. Table 7 conclusively demonstrates that as
h increases beyond 6, the best implementation of the aggregated model outperforms the best
implementation of the disaggregated model due to its reduced model size.

Next, we compared the column generation-based algorithm of the disaggregated model
with the arc-based model developed in [2], and the continuous branch-and-bound procedure
for solving LhP-D, for h = 2. The results from this experiment are displayed in Table 8,
where the average computational times over twenty instances using the recommended method
from [2] are denoted as Arc-Based, the results from the disaggregated model are denoted as
Disagg, and the results from solving LhP-D are denoted as LhP-D. We conclude that using
the disaggregated model is in fact a more effective method for the 100-node, 80% density

123

462 J Glob Optim (2008) 42:443–466

Table 7 Computational times for “best” aggregated and disaggregated models

h Size Density (%) Aggregated Disaggregated

Average Standard deviation Average Standard deviation

6 75 50 25.98 59.28 69.51 142.06

6 75 80 81.04 109.99 108.55 112.81

6 100 50 118.20 188.33 282.99 480.90

6 100 80 130.53 480.47 150.99 385.72

8 75 50 30.60 61.18 435.85∗ 990.98∗
8 75 80 34.22 80.61 163.30 168.18

8 100 50 55.81 106.61 630.56 1276.33

8 100 80 155.07 409.67 735.81∗ 1369.52∗
10 75 50 75.78 280.94 677.63∗ 1330.00∗
10 75 80 74.78 124.87 749.72 1179.99

10 100 50 123.61 345.68 1283.64∗ 1926.68∗
10 100 80 183.76 460.71 1236.09∗ 1927.82∗

Table 8 Comparison of prior methods to disaggregated model for h = 2

Size Method 20% Density 50% Density 80% Density

Average Standard deviation Average Standard deviation Average Standard deviation

25 Arc-Based 0.03 0.02 0.17 0.14 0.24 0.20

25 Disagg 0.09 0.02 0.44 0.34 0.83 0.65

25 LhP-D 0.18 0.21 5.06 6.47 9.49 8.83

50 Arc-Based 0.12 0.06 0.63 0.90 2.31 2.69

50 Disagg 0.47 0.47 1.65 2.21 3.62 4.50

50 LhP-D 19.27 77.05 260.13 523.31 740.38a 1620.78a

75 Arc-Based 0.46 0.46 2.56 2.54 7.95 12.11

75 Disagg 1.45 1.34 4.48 4.75 8.88 6.19

75 LhP-D 152.30 388.33 1297.91a 1965.59a 1468.92a 1736.05a

100 Arc-Based 0.95 1.06 9.20 17.55 100.52 145.66

100 Disagg 3.25 3.01 10.16 9.12 24.34 29.07

100 LhP-D 653.64a 1339.76a 1721.58a 2054.09a 2930.77a 2486.39a

a: Instances exceeding the 5400-s time limit are assigned a 5400 s CPU time.

instances than solving these acyclic problems via the branch-and-bound method prescribed
in [2], although the specialized Arc-Based procedure of [2] is more effective than Disagg on
the other 11 problem classes. The compact formulation LhP-D is not competitive on any of
these problem classes, even for the case of h = 2. Indeed, we examined LhP-D for the case of
h = 3 as well, but the performance of the continuous branch-and-bound algorithm seems to
deteriorate as h increases. For instance, even on the 50-node, 50%-density instances (which
the aggregated model solves in an average of 3.25 s, and the disaggregated model solves in
an average of 2.6 s) the LhP-D fails to solve four of the twenty instances within the 5400-s

123

J Glob Optim (2008) 42:443–466 463

Table 9 Comparison of methods with and without coefficient tightening

Average CPU Time Standard deviation

Method h No tightening With tightening No tightening With tightening

Aggregated 3 385.00 387.59 797.38 803.03

Aggregated 4 357.63 364.84 939.28 957.49

Aggregated 5 139.93 142.51 225.75 230.01

Disaggregated 3 50.59 39.19 99.97 62.07

Disaggregated 4 55.10 65.81 79.09 114.51

Disaggregated 5 80.80 84.70 93.44 102.84

time limit, and requires an average of 297.6 s on the other sixteen instances. (The details of
this experiment are omitted for brevity.)

Finally, we executed a comparison of the proposed aggregated and disaggregated branch-
and-price-and-cut algorithms with and without the constraint tightening mentioned in Remark
1. The algorithms are implemented in the same fashion with this tightened modification,
with the exception that the pricing problem only recognizes a maximum reliability of τ in
generating paths. (Paths with reliabilities larger than τ can indeed be generated, but only
λ log (1 − τ) is contributed to the reduced cost function in (17) and (22).) Table 9 displays
the results of this experiment, in which the columns labeled “No Tightening” display the
results reported previously in which no coefficient tightening was performed, and the columns
labeled “With Tightening” display the results reported in which coefficient tightening was
peformed. These results demonstrate that there is no evidence to suggest that coefficient
tightening reduces the computational effort to solve the most challenging (100 nodes, 80%
density) instances. The lack of effectiveness of this technique is perhaps due to the rarity
with which paths having reliabilities greater than τ were encountered in our test instances.

6 Conclusions

In this paper, we examined the solution of the h-path routing problem with reliability consi-
derations via branch-and-price-and-cut. We investigated two different formulations for this
problem: one smaller “aggregated” model in which each origin-destination flow was re-
presented by a common set of variables, and a larger “disaggregated” model in which a
separate set of variables was dedicated to each of the h paths. The latter formulation was
created to avoid having to solve a resource-constrained shortest-path problem in the presence
of negative-cost cycles during the column generation phase, and affords a more effective
branching procedure. We analyzed the use of model and algorithmic enhancements to im-
prove computational performance, and while our cut generation method was effective for the
aggregated model, no enhancements tested seemed helpful for the disaggregated model.
When h ≤ 5, the disaggregated model is preferable to the aggregated model. However,
the more compact aggregated formulation is more effective than the disaggregated model
formulation when h ≥ 6.

Future studies for this problem may include the examination of the reliable h-path problem
where either limited or unlimited arc sharing is permitted. Other considerations may include
how to revise this formulation when arc reliabilities or costs are stochastic. For very large

123

464 J Glob Optim (2008) 42:443–466

problems, it may serve well to develop strong heuristics and determine when a good stopping
point may be reached, instead of requiring a globally optimal solution.

Acknowledgements The authors are grateful for the remarks made by two anonymous referees, which
helped improve the presentation and contribution of the paper. The authors also gratefully acknowledge the
support of the Office of Naval Research under Grant Number N00014-03-1-0510 and the Air Force Office of
Scientific Research under Grant Number F49620-03-1-0377

Appendix

Our pricing strategy requires modified versions of both Dijkstra’s shortest path algorithm
and the Bellman-Ford algorithm.

Dijkstra’s Algorithm and Modifications. Dijkstra’s algorithm computes the shortest path
from the origin node to each node in a graph when all arc costs are nonnegative. For our
purposes, we must adjust the algorithm to include multiple records at each node containing
labels for both cost and reliability. We need to keep a list of records for each node such that
if we have � records for a particular node, the list is sorted such that C ′

p1
> C ′

p2
> · · · > C ′

p�

and Rp1 > Rp2 > · · · > Rp�
> 0. Each record will now have four attributes: cost, reliability

(rel), predecessor (pred), and visited.
We shall refer to the process to enter a (cost, reliability) pair into the list of records for

node j , called records[j], as enterItem(cost, rel, pred, j). The function
enterItem performs two checks. First, if −α + cost + λ log (1 − rel) ≥ 0, then since all
arc costs are nonnegative, any path resulting from this record will have a nonnegative reduced
cost and hence the function will not add the (cost, reliability) pair to the list of records for j .
(In the disaggregated model, even though arc (1, j) may have a negative cost, as long as we
label the graph forward as shown in the algorithm, we can still discard these records.) Next,
the function examines the records listed in records[j] and adds the (cost, reliability) pair
only if it is not dominated by, or identical to, any other (cost, reliability) pair in the list of
records. If a record needs to be added, the function adds the record in records[j] and
sets its attributes appropriately, with an automatic initialization of the “visited” field to zero.
The modified Dijkstra’s algorithm is shown in Algorithm 1.

The Bellman-Ford Algorithm and Modifications. The Bellman-Ford algorithm computes
the shortest path from the origin node to each node in a graph, and permits the existence
of negative-cost arcs, as long as no negative-cost cycles exist. If there are no negative-cost
cycles, then at the end of the algorithm each record contains the length of the shortest path
from that node to the origin.

The labeling process will be similar to that of the one used in the modified Dijkstra’s
algorithm. However, due to the existence of negative-cost arcs, the function enterItem
will add records regardless of the value of −α + cost + λ log (1 − rel).

In a traditional Bellman-Ford algorithm, a simple test is performed to see if negative cost
cycles exist. Although we prohibited the creation of cycles in our test instances, we keep the
check here for completeness. The modified Bellman-Ford algorithm with logic to identify
negative cost cycles is shown in Algorithm 2.

123

J Glob Optim (2008) 42:443–466 465

Algorithm 1: Modified Dijkstra’s algorithm
Create an initial record partial for records[1]
partial.cost = 0
partial.rel = 1
partial.pred = NULL
partial.visited = 0
i = 1
minrecord = minNotVisited(i)
Comment: minNotVisited(i) returns a pointer to the record in i with
the minimum cost not yet marked as visited. It returns a NULL if all
records have been visited in i.
while minrecord 	= NULL do

minrecord.visited = 1
foreach (i, j) ∈ A do

enterItem(minrecord.cost + ci j , minrecord.rel ×pi j , i, j)
end
mincost =∞
minrecord = NULL
for j = 1 to n do

if minNotVisited(j) 	= NULL then
if minNotVisited(j).cost < mincost then

minrecord = minNotVisited(j)
mincost = minNotVisited(j).cost
i = j

end
end

end
end

Algorithm 2: Modified Bellman-Ford algorithm
Create an initial record partial for records[1]
partial.cost = 0
partial.rel = 1
partial.pred = NULL
partial.visited = 0
for k = 1 to n do

foreach (i, j) ∈ A do
foreach record partial in records[i] do

if partial.visited == 0 then
enterItem(partial.cost + ci j , partial.rel×pi j , i , j)
partial.visited = 1

end
end

end
end
foreach (i, j) ∈ A do

Comment: minCost(i) returns a pointer to the record in records[i]
with the lowest cost value.
if minCost(j).cost > minCost(i).cost +ci j then

Terminate: Graph contains a negative cost cycle.
end

end

123

466 J Glob Optim (2008) 42:443–466

References

1. Andreas, A.K.: Mathematical programming algorithms for robust routing and evacuation problems. PhD
thesis. Department of Systems and Industrial Engineering, The University of Arizona, Tucson, Arizona
(2006)

2. Andreas, A.K., Smith, J.C.: Mathematical programming algorithms for two-path routing problems with
reliability considerations. Working Paper, Department of Systems and Industrial Engineering, The Uni-
versity of Arizona, Tucson, Arizona (2006)

3. Bard, J.F., Miller, J.L.: Probabilistic shortest path problems with budgetary constraints. Comput. Oper.
Res. 16(2), 145–159 (1989)

4. Barnhart, C., Hane, C.A., Johnson, E.L., Sigismondi, G.: A column generation and partitioning approach
for multi-commodity flow problems. Telecommun. Syst. 3, 239–258 (1995)

5. Barnhart, C., Hane, C.A., Vance, P.H.: Using branch-and-price-and-cut to solve origin-destination integer
multicommodity flow problems. Oper. Res. 48(2), 318–326 (2000)

6. Chen, Z.L., Powell, W.B. : A generalized threshold algorithm for the shortest path problem with time
windows. In: Pardalos, P.M., Du, D.-Z. (eds.) Network Design: Connectivity and Facilities Location,
Discrete Mathematics and Theoretical Computer Science, pp. 303–318. American Mathematical So-
ciety, Providence, RI (1998)

7. Desrochers, M., Soumis, F.: A generalized permanent labelling algorithm for the shortest path problem
with time windows. INFOR 26(3), 191–212 (1988)

8. Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F.: Time constrained routing and scheduling. In: Ball,
M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Routing, volume 8 of Handbooks
in Operations Research and Management Science, pp. 35–139. Elsevier, Amsterdam (1995)

9. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–
271 (1959)

10. Dumitrescu, I., Boland, N.: Algorithms for the weight constrained shortest path problem. Int. Trans.
Oper. Res. 8, 15–29 (2001)

11. Dumitrescu, I., Boland, N.: Improved preprocessing, labeling and scaling algorithms for the weight-
constrained shortest path problem. Networks 42(3), 135–153 (2003)

12. Elimam, A.A., Kohler, D.: Case study: Two engineering applications of a constrained shortest-path
model. Eur. J. Oper. Res. 103, 426–438 (1997)

13. Falk, J.E., Soland, R.M.: An algorithm for separable nonconvex programming problems. Manage.
Sci. 15, 550–569 (1969)

14. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theor. Comp.
Sci. 10, 111–121 (1980)

15. Glover, F., Glover, R., Klingman, D.: The threshold shortest path problem. Networks 14, 25–36 (1984)
16. Lübbecke, M.E., Desrosiers, J.: Selected topics in column generation. Oper. Res. 53(6), 1007–

1023 (2005)
17. Sherali, H.D., Smith, J.C.: Improving discrete model representations via symmetry considerations. Ma-

nage. Sci. 47(10), 1396–1407 (2001)
18. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problems

using a Reformulation-Linearization Technique. J. Global Optim. 2, 101–112 (1992)
19. Suurballe, J.W.: Disjoint paths in a network. Networks 4, 125–145 (1974)
20. Vanderbeck, F.: Decomposition and column generation for integer programs. PhD thesis, Université

Catholique de Louvain, Belgium (1994)
21. Vanderbeck, F.: Branching in branch-and-price: a generic scheme. Working Paper, Applied Mathematics,

University Bordeaux 1, F-33405 Talence Cedex, France (2006)
22. Vanderbeck, F., Wolsey, L.A.: An exact algorithm for IP column generation. Oper. Res. Lett. 19, 151–

159 (1996)
23. Wilhelm, W.E.: A technical review of column generation in integer programming. Optim. Eng. 2, 159–

200 (2001)
24. Zabarankin, M., Uryasev, S., Pardalos, P.M. : Optimal risk path algorithms. In: Murphey, R., Pardalos,

P.M. (eds.) Cooperative Control and Optimization, pp. 273–303. Kluwer Academic Publishers, Bos-
ton (2002)

123

	Branch-and-price-and-cut algorithms for solvingthe reliable h-paths problem
	Abstract
	1 Problem setup
	2 Compact model formulation
	3 Aggregated column generation model
	3.1 Pricing
	3.2 Enhancements
	3.3 Branching

	4 Disaggregated column generation model
	4.1 Pricing
	4.2 Enhancements
	4.3 Branching

	5 Computational results
	6 Conclusions
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

